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Diffusion Kalman Filtering Based on

Covariance Intersection

Jinwen Hu, Lihua Xie, Cishen Zhang

School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore 639798 (e-mail: {HU0002EN, ELHXIE,

ECSZhang}@ntu.edu.sg).

Abstract: This paper is concerned with distributed Kalman filtering for linear time-varying
systems over multi-agent sensor networks. We propose a diffusion Kalman filtering algorithm
based on a covariance intersection method, where local estimates are fused by incorporating
the covariance information of local Kalman filters. Our algorithm leads to a stable estimate
for each agent regardless of whether the system is uniformly observable with respect to local
measurements as long as the system is uniformly observable under global sensor measurements
and the communication is sufficiently fast compared to the sampling period. Simulation results
validate the effectiveness of the proposed distributed Kalman filtering algorithm.

1. INTRODUCTION

Distributed fusion and estimation is an important topic in
sensor networks and has been studied for applications such
as environmental monitoring, surveillance, target tracking,
etc; see, for example, [Li et al., 2002] and the references
therein. In these applications, sensors installed on static
or mobile agents can obtain measurements in a parallel
manner. The communication and computation capabilities
of each agent enables acquiring information from neighbors
and processing it individually to get an estimate of a
concerned physical quantity. The distributed processing
greatly alleviates the computation load as taken by the
fusion center in the centralized fusion and estimation.
The distributed fusion and estimation problem has been
considered in many applications [Li et al., 2002, Chang
et al., 1997, Mori et al., 2002].

Recently, the distributed Kalman filtering received great
attentions. In Hashemipour et al. [1988], a decentralized
hierarchical structure was proposed, in which the estimates
of local Kalman filters are calculated individually by each
agent and then combined by a fusion center. A distributed
Kalman filtering method using weighted averaging was
proposed in Alriksson and Rantzer [2006], which requires
the global information of the state covariances. Consensus-
based distributed Kalman filters were proposed in Spanos
et al. [2005], Olfati-Saber [2005, 2007], where local mea-
surements are exchanged among neighbors in order to
get the same estimate for each agent in the steady state
and such estimate is exactly the global optimal estimate
by a centralized estimation. However, multiple consensus
iterations are usually needed to reach the steady state
for the next Kalman update. Cattivelli and Sayed [2010]
proposed a distributed Kalman filtering (DKF) algorithm,
in which each agent exchanges their measurements as well
as the pre-estimate of each agent. Measurements of neigh-
boring agents are integrated to perform the local Kalman
filtering and get a pre-estimate of the state, after which
the pre-estimates of neighboring agents are fused locally
by a convex combination to refine the pre-estimates. Dif-

ferent from the consensus approaches, this new strategy
does not rely on multiple communication steps to reach
a steady state for all agents before the Kalman update,
which improves the efficiency of incorporating new mea-
surement information. This diffusion strategy is of more
practical use when dealing with dynamic state vectors,
where new measurements must be processed in a timely
manner instead of waiting for a consensus to be achieved.
In Cattivelli and Sayed [2009], the DKF algorithm was
further developed with adaptive weights by optimizing
a locally defined cost function. However, this adaptive
rule cannot guarantee the estimation stability for each
agent. Moreover, the estimation covariance information is
not taken into consideration in the choice of combination
weights in Cattivelli and Sayed [2010] and Cattivelli and
Sayed [2009], which we believe can play an important role
in improving the estimation performance.

Most of the existing distributed fusion methods involving
the covariance information are based on the assumption
that correlations in the estimates are known to each neigh-
boring agent [Li et al., 2002, Chang et al., 1997, Mori et al.,
2002]. However, in a decentralized network, each agent
only has information about its local topology and neigh-
bors’ estimates, and the cross-correlation of the estimates
between each two agents is usually unknown. In Julier and
Uhlmann [1997, 2001], the Covariance Intersection (CI)
algorithm was proposed for fusion of multiple consistent
estimates with unknown correlations, which uses a convex
combination of the estimates and chooses the combination
weights by minimizing the trace or determinant of an
upper bound of the error covariance matrix. Julier and
Uhlmann [1997], Uhlmann et al. [1999], Arambel et al.
[2002], Wang and Li [2009] applied the CI algorithm in
the state estimation together with Kalman filter, where the
estimates of individual Kalman filters are fused locally by
the CI algorithm. However, the stability of the estimation
may not be guaranteed by the pure CI algorithm when the
local observability is lost.
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In this paper, we propose a diffusion Kalman filtering
algorithm based on covariance intersection (CI-DKF). Our
algorithm allows each agent to obtain a stable estimate
(i.e. with bounded error covariance) by sharing informa-
tion only with its neighbors. Different from the DKF
algorithm proposed in [Cattivelli and Sayed, 2010], our
estimates are fused by the CI algorithm which incorporates
the error covariance information. The CI-DKF algorithm is
mainly applied in the case where local observability is lost
for some agents. A consensus-based information gathering
scheme is designed to rebuild the local observability within
a finite time duration. We prove that the covariance of the
estimation error of each agent is bounded if the uniform
observability condition is satisfied globally.

This paper is organized as follows. We first give the system
model and recall an existing DKF algorithm in Section 2.
In Section 3, a choice rule of adaptive weights is designed
based on the CI algorithm. Then, we propose the CI-DKF
algorithm for the cases where local observability is lost in
Section 4. The effectiveness of the CI-DKF algorithm is
testified by simulation in Section 5.

2. BACKGROUND

2.1 System Description

We consider a set of N agents with limited communication
range and spatially distributed over a surveillance region.
Agent k takes measurement yk,i of a common environment
state xi independently at time i with individual observa-
tion matrix Hk,i. The state-space model for each agent k
is of the form:

xi+1 = Fixi + wi

yk,i = Hk,ixi + vk,i
(1)

where wi is the process noise and vk,i the measurement
noise of agent k at time i. Hence, if the measurement
information is processed in a centralized manner, we apply
the augmented forms:

yi =







y1,i

...
yN,i






, Hi =







H1,i

...
HN,i






, vi =







v1,i

...
vN,i.







wi and vk,i are assumed to be zero-mean, uncorrelated and
white with

E

[

wi

vi

] [

wj

vj

]T

=

[

Qi 0
0 Ri

]

δij , Evk,iv
T
l,j = Rk,iδklδij

where δij is the Kronecker delta. Qi and Rk,i are assumed
to be positive definite and upper bounded. The matrices
Fi and Hk,i are also assumed to be bounded.

The topology of the network of all agents can be modeled
by an undirected graph G = (E ,V). V = 1, 2, . . . , N is the
vertex set and E ⊂ {{k, l}|k, l ∈ V} is the edge set, where
each edge {k, l} is an unordered pair of distinct agents.
The graph or the network is connected if for any two
vertices k and l there exists a sequence of edges (a path)
{k, h1}, {h1, h2}, . . . , {hn−1, hn}, {hn, l} in E . The graph
can be time-varying with Gi = (Ei,V), where Ei is the edge
set at time i. Let Nk,i = {l ∈ V|k, l ∈ Ei} denote the set of
neighbors of agent k at time i. An agent is assumed to be
a neighbor of itself, i.e. k ∈ Nk,i. The degree (number of
neighbors) of agent k at time i is denoted as dk,i = |Nk,i|.

Let the set {kmi
} (mi = 1, . . . , dk,i) denote the indices

of the neighbors of agent k at time i. Then, we can define
the local observation matrix for each k:

H loc
k,i , col

{

Hk1,i,Hk2,i, . . . ,Hkdk,i
,i

}

.

2.2 Diffusion Kalman Filtering

The DKF algorithm proposed in Cattivelli and Sayed
[2010] is shown by Algorithm 1. The objective of the
DKF implementations is for every agent k in the network
to compute an estimate of the unknown state xi, while
sharing data only with its neighbors {l ∈ Nk,i}. We denote
the estimate of xi obtained by node k and based on local
observations up to time j as x̂k,i|j . At every time instant
i, agents communicate to their neighbors the quantities
HT

k,iR
−1
k,iHk,i and HT

k,iR
−1
k,iyk,i for the incremental update

and the intermediate estimate ψk,i for the diffusion up-
date. The diffusion update in Algorithm 1 requires the
introduction of a pN × pN diffusion matrix Ci subject to:

Ci1 = 1 (2)

where 1 is an Np × 1 column vector with unit entries.
Ci can be partitioned into p × p blocks with each block
Ck,l,i (k, l = 1, 2, . . . , p) being an N × N matrix as a
weight to combine the estimate ψl,i.

Algorithm 1. (Diffusion Kalman filtering)

Start with xk,0|−1 = 0, Pk,0|−1 = Π0 and i = 0 for all k,
given a pre-defined diffusion matrix C = {Ck,l}Np×Np

:
Step 1: Incremental Update:

Sk,i =
∑

l∈Nk,i

HT
l,iR

−1
l,i Hl,i

qk,i =
∑

l∈Nk,i

HT
l,iR

−1
l,i yl,i

P−1
k,i|i = P−1

k,i|i−1 + Sk,i

ψk,i = x̂k,i|i−1 + Pk,i|i

[

qk,i − Sk,ix̂k,i|i−1

]

Step 2: Diffusion Update:
x̂k,i|i =

∑

l∈Nk,i

Ck,lψl,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
T
i + Qi

i ← i + 1.

3. CI-BASED ADAPTIVE DIFFUSION MATRIX

The diffusion matrix Ci plays an important role in the
diffusion update. A fixed Ci is used in Cattivelli and
Sayed [2010], and an adaptive Ci is further developed
in Cattivelli and Sayed [2009] where agent k adap-
tively chooses the combination weights Ck,l,i by mini-

mizing E
∥

∥xi −
∑

l∈Nk
Ck,l,iψl,i

∥

∥

2
. Since E

[

xT
i ψl,i

]

and

E
[

ψT
l,iψl,i

]

are not known, they are replaced by the in-

stantaneous approximations x̂T
k,i−1|iψl,i−1 and ψT

l,i−1ψl,i−1

respectively in Cattivelli and Sayed [2009]. The accuracy
of such approximation highly relies on the accuracy of the
estimates x̂T

k,i−1|i and ψT
l,i−1ψl,i−1 and can not guarantee

the stability of the local Kalman filter of agent k especially
when the local detectability is lost, as will be shown by
the simulations in Section 5. Therefore, we need to seek
another effective way of choosing the adaptive weights that
can improve the estimation of each agent.
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The diffusion matrix influences the performance of the
whole network through assigning different weights to dif-
ferent local Kalman filters at each iteration. Heuristically
speaking, a larger weight should be assigned to the local
Kalman filter with better estimation performance which
can be evaluated by, for example, its estimation error
covariance matrix. Based on this idea, we introduce the
CI algorithm to incorporate the information of error co-
variance for choosing the diffusion matrix.

Suppose agent k is going to fuse the estimates φl,i from
its neighbors with corresponding covariance matrices Pl,i.
The fusion based on the CI algorithm of Julier and
Uhlmann [1997] is given by

x̂k,i = Λk,i

∑

l∈Nk,i

βk,l,iP
−1
l,i φl,i

Λk,i =





∑

l∈Nk,i

βk,l,iP
−1
l,i





−1 (3)

where βk,l,i with 0 6 βk,l,i 6 1 and
∑

l∈Nk,i

βk,l,i = 1

are chosen such that the trace or determinant of Λk,i is
minimized. Then, the weighting matrix for φl,i is

Ck,l,i = βk,l,iΛk,iP
−1
l,i . (4)

It should be noted that Pl,i does not have to be the true
error covariance matrix of φl,i, and its influence on the
estimation stability will be discussed later. Due to the high
computation load for choosing the optimal βk,l,i, several
fast CI algorithms that produce suboptimal solutions have
been proposed in terms of trace or determinant minimiza-
tion [Niehsen, 2002, Franken and Hupper, 2005, Wang and
Li, 2009]. For the sake of computational simplicity, we use
the simplified algorithm proposed in Niehsen [2002] which
gives

βk,l,i =
1/tr (Pl,i)

∑

m∈Nk,i

1/tr (Pm,i)
.

A even more simplified form is 0-1 weighting:

gk,i = arg min
l∈Nk,i

tr
(

Pl,i|i

)

βk,l,i =

{

1, if l = gk,i;

0, otherwise.

which implies

Ck,l,i =

{

I, if l = gk,i;

0, otherwise.
(5)

4. CI-BASED DIFFUSION KALMAN FILTERING
ALGORITHM

Our aim is to seek methods such that each agent can obtain
a stable estimate (i.e., its error covariance is bounded) even
when the estimation based only on local measurements
may be unstable. Before designing the algorithm, we recall
the uniform observability of linear time-varying systems
[Anderson and Moore, 1981]. Consider the system with
time-varying global measurement matrices Fi, Hi and let
the observability gramian be given by

W i+δ,i =
i+δ
∑

t=i

ΦT
t,iH

T
t HtΦt,i (6)

for some integer δ > 0, where Φi,i = I and

Φt,i = Ft−1 · · ·Fi

for t > i. The matrices Fi and Hi are said to satisfy the
uniform observability condition, if there are real numbers
η, η > 0 and an integer δ > 0, such that

ηI 6 W i+δ,i 6 ηI. (7)

In the same way, we can define the uniform observability
for each local system. Consider the local system of agent
k with time-varying matrix Fi and H loc

k,i , and let the
observability gramian be given by

W k
i+δk,i =

i+δk
∑

t=i

ΦT
t,i(H

loc
k,t )

T H loc
k,t Φt,i (8)

for some integer δk > 0. The matrices Fi and H loc
k,i are said

to satisfy the uniform observability condition, if there are
real numbers η

k
, ηk > 0 and an integer δk > 0, such that

η
k
I 6 W k

i+δk,i 6 ηkI. (9)

In a network, (9) may not hold for all agents and we use Ω
to denote the set of agents for which (9) holds, i.e., k ∈ Ω
if Fi and H loc

k,i satisfy the uniform observability condition,

and k /∈ Ω otherwise. In the sequel, we will discuss the
problem under two scenarios, partial local observability
(Ω 6= ∅ and each agent k knows whether k ∈ Ω or not)
and no local observability (Ω = ∅).

4.1 Partial Local Observability

Since the estimate of agent k ∈ Ω is already stable due
to the uniform observability condition satisfied by Fi and
H loc

k,i , our job is to let each agent l /∈ Ω obtain a stable
estimate by fusing the estimates of other agents. Hence, we
propose the CI-based diffusion Kalman filtering (CI-DKF)
algorithm for partial local observability (Algorithm 2) for
the two different sets of agents in the network. Algorithm 2
below requires at every instant i, each agent communicate
to its neighbors the quantities HT

k,iR
−1
k,iHk,i, HT

k,iR
−1
k,iyk,i

and Pk,i|i−1 by one message. Besides the difference in the
diffusion updating scheme, Algorithm 2 does not require
each agent to communicate an intermediate estimate as
Algorithm 1 does, which needs an extra message.

Algorithm 2. (CI-based diffusion Kalman filtering for par-
tial local observability)

Start with xk,0|−1 = 0, Pk,0|−1 = Π0 and i = 0 for all k:
Step 1: Diffusion Update:

Calculate Λk,i as defined by (3) and the diffusion
matrix Ci by (4);
For k ∈ Ω, if Pk,i|i−1 > Λk,i,

x̂k,i|i−1 ←
∑

l∈Nk,i

Ck,l,ix̂l,i|i−1

Pk,i|i−1 ← Λk,i

For k /∈ Ω,
x̂k,i|i−1 ←

∑

l∈Nk,i

Ck,l,ix̂l,i|i−1

Pk,i|i−1 ← Λk,i

Step 2: Standard Kalman Filter Update:
Sk,i =

∑

l∈Nk,i

HT
l,iR

−1
l,i Hl,i

qk,i =
∑

l∈Nk,i

HT
l,iR

−1
l,i yl,i
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P−1
k,i|i = P−1

k,i|i−1 + Sk,i

x̂k,i|i = x̂k,i|i−1 + Pk,i|i

[

qk,i − Sk,ix̂k,i|i−1

]

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
T
i + Qi

i ← i + 1.

Theorem 1. With Pl,0|−1 = Π0 > E
[

x̃l,0|−1x̃
T
l,0|−1

]

for all

agents l = 1, · · · , N , if there exists an agent k ∈ Ω and the
network is connected all the time, then Pl,i|i−1 is bounded

and Pl,i|i−1 > E
[

x̃k,i|i−1x̃
T
k,i|i−1

]

for l = 1, · · · , N through

all iterations of Algorithm 2 .

Proof. The proof is omitted due to space limitation.

4.2 No Local Observability

For the case of no local observability, one choice to make
Algorithm 2 applicable is to rebuild the local observability
for some agents. The key to rebuilding the observability is
to get enough measurement information of the state. As
we know, the optimal estimate that can be obtained for
the whole network is the one computed in a centralized
manner by gathering the measurement information of all
agents. In the Kalman filter update step, the measurement
information of agent k is contained in Sk,i and qk,i, and the
corresponding information matrix and information vector
for the optimal estimate are respectively:

S̄i =
N

∑

k=1

HT
k,iR

−1
k,iHk,i = HT

i R−1
i Hi

q̄i =
N

∑

k=1

HT
k,iR

−1
k,iyk,i = HT

i R−1
i yi

(10)

Due to limited communication and storage capability, each
agent may not gather all of the information required for the
optimal estimate within finite time, but it is still possible
for each agent to obtain a stable estimate by gathering
enough information.

In recent years, many consensus approaches have been
proposed for distributed sensor fusion [Olfati-Saber, 2005,
Xiao et al., 2005, Olfati-Saber, 2007, Ren et al., 2007]. By
these approaches, Sk,i and qk,i for each agent k approach
S̄i/N and q̄k,i/N respectively in an asymptotic manner as
the number of communication cycles goes to infinity. The
finite-time consensus for continuous variables is shown to
be achievable in Wang and Xiao [2010]. However, there has
been no effective method to achieve the finite-time consen-
sus for discrete variables. Olfati-Saber [2005] first applied
a consensus protocol in the distributed Kalman filtering
where each agent implements the consensus protocol to
gather measurement information between two successive
Kalman filter updates as shown in Fig. 1. However, by this
approach, Sk,i and qk,i may not have achieved consensus,
i.e. converge to the values of S̄i and q̄k,i before the Kalman
filter update within a finite period of time, and the error
caused by treating Sk,i and qk,i as S̄i and q̄k,i respectively
may destroy the estimation stability.

For computational simplicity, we adopt the distributed
consensus protocol proposed in Xiao et al. [2005] for in-
formation exchange between two successive Kalman filter
updates (Fig. 1), but the received information is processed

Fig. 1. Implementation of consensus protocol embedded in
the Kalman filter for agent k.

in a different way to guarantee the estimation stability. In
Xiao et al. [2005], each agent aims to let Sk,i and qk,i reach
a consensus by the following protocol:

Sk,i (j + 1)

=

(

1 −
dk,i (j + 1) − 1

N

)

Sk,i (j) +
1

N

∑

l∈Nk,i(j+1)
l 6=k

Sl,i (j)

qk,i (j + 1)

=

(

1 −
dk,i (j + 1) − 1

N

)

qk,i (j) +
1

N

∑

l∈Nk,i(j+1)
l 6=k

ql,i (j)

(11)
where i refers to the i-th sampling interval and j the j-th
communication cycle. Then, we can get

Sk,i (j) =
N

∑

l=1

ρk,l,i (j)Sk,i (0)

qk,i (j) =
N

∑

l=1

ρk,l,i (j) qk,i (0)

(12)

where ρk,l,i are a set of weights satisfying

0 6 ρk,l,i(j) 6 1, ρk,l,i(j) = ρl,k,i(j),
N

∑

l=1

ρk,l,i(j) = 1.

It is straightforward to get the following conclusion.

Lemma 2. If the network is connected through all j, then
there exists a time 0 < to 6 N −1 such that for each agent
k and j > to,

ρk,l,i(j) > (
1

N
)to > (

1

N
)N−1

Summarizing the results above, we design the information
gathering scheme (Algorithm 3), where to is a given time
length for communication. Then, we can define a set Υi,
where k ∈ Υi, if min

l
ρk,l,t(to) > 0, and k /∈ Υi otherwise.

With Algorithm 3 embedded, the CI-DKF algorithm for
the case of no local observability is shown in Algorithm 4.

Algorithm 3. (Information gathering scheme)

Start with Sk,i (0) = HT
k,iR

−1
k,iHk,i , qk,i (0) = HT

k,iR
−1
k,iyk,i,

ρk,k,i(0) = 1, ρk,l,i(0) = 0 for l 6= k, and j = 1 for all k:
Repeat the following steps until j > to:

Calculate Sk,i(j) and qk,i(j) by (11);
Calculate ρk,l,i(j) (l = 1, . . . N) by (??);
j ← j + 1

end

Sk,i ←
1

max
l

ρk,l,i(to)
Sk,i(to)
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qk,i ←
1

max
l

ρk,l,i(j)
qk,i(to).

Algorithm 4. (CI-based diffusion Kalman filtering for no
local observability)

Start with xk,0|−1 = 0, Pk,0|−1 = Π0 and i = 0 for all k:
Step 1: Information Gathering:

Take measurement and implement Algorithm 3 to
get Sk,i, qk,i and ρk,l,i (l = 1, . . . N);

Step 2: Diffusion Update:
Calculate Λk,i as defined by (3) and the diffusion
matrix Ci by (4);
For k ∈ Υi, if Pk,i|i−1 > Λk,i

x̂k,i|i−1 ←
∑

l∈Nk,i

Ck,l,ix̂l,i|i−1

Pk,i|i−1 ← Λk,i

For k /∈ Υi,
x̂k,i|i−1 ←

∑

l∈Nk,i

Ck,l,ix̂l,i|i−1

Pk,i|i−1 ← Λk,i

Step 3: Standard Kalman Filter Update:
P−1

k,i|i = P−1
k,i|i−1 + Sk,i

x̂k,i|i = x̂k,i|i−1 + Pk,i|i

[

qk,i − Sk,ix̂k,i|i−1

]

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
T
i + Qi

i ← i + 1.

Lemma 3. With Pk,0|−1 = Π0 > E
[

x̃k,0|−1x̃
T
k,0|−1

]

for all

agents k = 1, · · · , N , Pk,i|i−1 > E
[

x̃k,i|i−1x̃
T
k,i|i−1

]

holds

through all iterations of Algorithm 4.

Theorem 4. With Pl,0|−1 = Π0 > E
[

x̃l,0|−1x̃
T
l,0|−1

]

for

all agents l = 1, · · · , N , if there exists an agent k ∈ Υi

through all iterations of Algorithm 4 and the network
is connected all the time, then Pl,i|i−1 is bounded for
all agents if Fi and Hi satisfy the uniform observability
condition.

Proof. The proof is omitted due to space limitation.

5. SIMULATION

5.1 Simulation Environment

A time-invariant system is considered for the ease of simu-
lation, though the proposed algorithm is not restricted to
it. A stationary sensor network is estimating the dynamic
energy intensity of two stationary sources, the positions
of which are known. We use two exponential functions to
denote the energy intensity of two sources spreading over
a surveillance region and the system model is given by:

F =

[

1 0.005
0 1

]

, G = I, Hk =

[

e−λ(sk−µ1)
2

e−λ(sk−µ2)
2

]

,

Q = 5I, Rk = 20

where sk is the position of agent k , and µ1 and µ2 are the
positions of the two sources. In the following simulations,
we will set different values for attenuation factor λ and
communication range rc to get different energy intensity
field and network topology respectively. The threshold
for the identity classification on observability is set as

Wth = 0.01I, and k ∈ Ω if W k
i+p,i > Wth. Similarly, we

also set ρth = 0.001 and k ∈ Υ if min
l

ρk,l,t(to) > 0 > ρth.

We use the mean-square deviation (MSD), the same per-
formance index adopted in Cattivelli and Sayed [2010], to
evaluate the algorithm performance. The MSD for agent
k at time i is defined as

MSDk,i , E
[

x̃k,i|i−1x̃
T
k,i|i−1

]

.

Then, the MSD of the whole network is calculated as

MSDi ,
1

N

N
∑

k=1

MSDk,i.

We compare MSDi of different algorithms. The results are
averaged over 100 independent experiments.

We first implement simulations in the case of partial
local observability and compare the performance of four
different algorithms: DKF algorithm (Algorithm 1) with
adaptive weights, CI-DKF algorithm for partial local ob-
servability (Algorithm 2) with weight choice rule (4) and
(5), and no diffusion algorithm (i.e. each agent only im-
plements the standard Kalman filter update). In this case,
N = 25 agents are uniformly deployed over a 50 × 50m2

square region and we let each one of them be able to fully
observe the state by setting λ = 0.02 and rc = 15m (Fig.
2). Besides, five more agents are added randomly within
[−5, 0]× [−5, 0] which can not observe the state since they
are too far away from the sources. The positions of the two

sources are fixed at µ1 = [20 30]
T

and µ2 = [30 20]
T
.

Then we test the performance of the CI-DKF algorithm
for no local observability (Algorithm 4) with weight choice
rule (4), which is compared to the no diffusion algorithm
with information gathering scheme. In this simulation,

we place the sources at µ1 = [0 50]
T

and µ2 = [50 0]
T

respectively and choose N = 25, λ = 0.02 and rc = 15m
such that no agent can observe the whole state (Fig. 3).
Two different values of the communication time length
to = 3 and to = 6 are simulated.

5.2 Simulation Results

In the case of partial local observability, MSD by the DKF
algorithm and the no fusion algorithm both diverge, while
MSD by the CI-DKF algorithm is still bounded and very
low as shown in Fig. 4a. Besides, the comparison of diffu-
sion algorithms with no fusion algorithm illustrates that
diffusion can improve the network average performance.
Another point to note is that the CI-DKF algorithm with
rule (4) and (5) have nearly the same performance. This
suggests us to use rule (5) in real applications due to its
simplified computation.

Fig. 4b shows that the no diffusion algorithm with the
information gathering scheme cannot achieve stable esti-
mation when to = 3, while the CI-DKF algorithm can.
When to = 6, the local observability is rebuilt for all
agents and both of the CI-DKF algorithm and the no
diffusion algorithm can achieve stable estimation. Besides,
the MSD by the CI-DKF algorithm is smaller than that
by the no diffusion algorithm in these cases.
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(a) Energy intensity field.
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Fig. 2. Simulation setup of Scenario I.

(a) Energy intensity field.

0 10 20 30 40 50

0

10

20

30

40

50

 

 
Agents

Sources

(b) Source and agent positions.

Fig. 3. Simulation setup of Scenario II.
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Fig. 4. The mean-square deviation.

6. CONCLUSIONS

In this paper, we proposed a CI-based diffusion Kalman
filtering (CI-DKF) algorithm by incorporating the covari-
ance information. The CI-DKF algorithm can be applied in
the case of lacking local observability. A consensus-based
information gathering scheme is embedded when no single
agent can observe the state. Simulation shows that the CI-
DKF algorithm has better performance than that by the
original DKF and those by local Kalman filters.
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